3.1966 \(\int \frac {(d+e x)^4}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=172 \[ \frac {e^{3/2} \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{c^{5/2} d^{5/2}}-\frac {2 e (d+e x)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 (d+e x)^3}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

-2/3*(e*x+d)^3/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+e^(3/2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)
/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(5/2)/d^(5/2)-2*e*(e*x+d)/c^2/d^2/(a*d*e+(a*e^2+c*
d^2)*x+c*d*e*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {668, 652, 621, 206} \[ -\frac {2 e (d+e x)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {e^{3/2} \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{c^{5/2} d^{5/2}}-\frac {2 (d+e x)^3}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^4/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^3)/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) - (2*e*(d + e*x))/(c^2*d^2*Sqrt[a*d*e +
 (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (e^(3/2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(c^(5/2)*d^(5/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 652

Int[((d_.) + (e_.)*(x_))^2*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)*(a + b*x +
 c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e^2*(p + 2))/(c*(p + 1)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fr
eeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p,
-1]

Rule 668

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e^2*(m + p))/(c*(p + 1)), Int[(d + e*x)^(m - 2)*(a + b*x +
 c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &
& LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {(d+e x)^4}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac {2 (d+e x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {e \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{c d}\\ &=-\frac {2 (d+e x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 e (d+e x)}{c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {e^2 \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c^2 d^2}\\ &=-\frac {2 (d+e x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 e (d+e x)}{c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (2 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^2 d^2}\\ &=-\frac {2 (d+e x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 e (d+e x)}{c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {e^{3/2} \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^{5/2} d^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.07, size = 98, normalized size = 0.57 \[ -\frac {2 ((d+e x) (a e+c d x))^{3/2} \, _2F_1\left (-\frac {3}{2},-\frac {3}{2};-\frac {1}{2};\frac {e (a e+c d x)}{a e^2-c d^2}\right )}{3 c d (a e+c d x)^3 \left (\frac {c d (d+e x)}{c d^2-a e^2}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^4/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*((a*e + c*d*x)*(d + e*x))^(3/2)*Hypergeometric2F1[-3/2, -3/2, -1/2, (e*(a*e + c*d*x))/(-(c*d^2) + a*e^2)])
/(3*c*d*(a*e + c*d*x)^3*((c*d*(d + e*x))/(c*d^2 - a*e^2))^(3/2))

________________________________________________________________________________________

fricas [A]  time = 2.68, size = 469, normalized size = 2.73 \[ \left [\frac {3 \, {\left (c^{2} d^{2} e x^{2} + 2 \, a c d e^{2} x + a^{2} e^{3}\right )} \sqrt {\frac {e}{c d}} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x + 4 \, {\left (2 \, c^{2} d^{2} e x + c^{2} d^{3} + a c d e^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {\frac {e}{c d}}\right ) - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (4 \, c d e x + c d^{2} + 3 \, a e^{2}\right )}}{6 \, {\left (c^{4} d^{4} x^{2} + 2 \, a c^{3} d^{3} e x + a^{2} c^{2} d^{2} e^{2}\right )}}, -\frac {3 \, {\left (c^{2} d^{2} e x^{2} + 2 \, a c d e^{2} x + a^{2} e^{3}\right )} \sqrt {-\frac {e}{c d}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-\frac {e}{c d}}}{2 \, {\left (c d e^{2} x^{2} + a d e^{2} + {\left (c d^{2} e + a e^{3}\right )} x\right )}}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (4 \, c d e x + c d^{2} + 3 \, a e^{2}\right )}}{3 \, {\left (c^{4} d^{4} x^{2} + 2 \, a c^{3} d^{3} e x + a^{2} c^{2} d^{2} e^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

[1/6*(3*(c^2*d^2*e*x^2 + 2*a*c*d*e^2*x + a^2*e^3)*sqrt(e/(c*d))*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^
2 + a^2*e^4 + 8*(c^2*d^3*e + a*c*d*e^3)*x + 4*(2*c^2*d^2*e*x + c^2*d^3 + a*c*d*e^2)*sqrt(c*d*e*x^2 + a*d*e + (
c*d^2 + a*e^2)*x)*sqrt(e/(c*d))) - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(4*c*d*e*x + c*d^2 + 3*a*e^2)
)/(c^4*d^4*x^2 + 2*a*c^3*d^3*e*x + a^2*c^2*d^2*e^2), -1/3*(3*(c^2*d^2*e*x^2 + 2*a*c*d*e^2*x + a^2*e^3)*sqrt(-e
/(c*d))*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-e/(c*d))/(c*d
*e^2*x^2 + a*d*e^2 + (c*d^2*e + a*e^3)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(4*c*d*e*x + c*d^2
+ 3*a*e^2))/(c^4*d^4*x^2 + 2*a*c^3*d^3*e*x + a^2*c^2*d^2*e^2)]

________________________________________________________________________________________

giac [B]  time = 0.77, size = 620, normalized size = 3.60 \[ -\frac {2 \, {\left ({\left ({\left (\frac {4 \, {\left (c^{5} d^{9} e^{3} - 4 \, a c^{4} d^{7} e^{5} + 6 \, a^{2} c^{3} d^{5} e^{7} - 4 \, a^{3} c^{2} d^{3} e^{9} + a^{4} c d e^{11}\right )} x}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}} + \frac {3 \, {\left (3 \, c^{5} d^{10} e^{2} - 11 \, a c^{4} d^{8} e^{4} + 14 \, a^{2} c^{3} d^{6} e^{6} - 6 \, a^{3} c^{2} d^{4} e^{8} - a^{4} c d^{2} e^{10} + a^{5} e^{12}\right )}}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}}\right )} x + \frac {6 \, {\left (c^{5} d^{11} e - 3 \, a c^{4} d^{9} e^{3} + 2 \, a^{2} c^{3} d^{7} e^{5} + 2 \, a^{3} c^{2} d^{5} e^{7} - 3 \, a^{4} c d^{3} e^{9} + a^{5} d e^{11}\right )}}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}}\right )} x + \frac {c^{5} d^{12} - a c^{4} d^{10} e^{2} - 6 \, a^{2} c^{3} d^{8} e^{4} + 14 \, a^{3} c^{2} d^{6} e^{6} - 11 \, a^{4} c d^{4} e^{8} + 3 \, a^{5} d^{2} e^{10}}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}}\right )}}{3 \, {\left (c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}} - \frac {\sqrt {c d} e^{\frac {3}{2}} \log \left ({\left | -\sqrt {c d} c d^{2} e^{\frac {1}{2}} - 2 \, {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x}\right )} c d e - \sqrt {c d} a e^{\frac {5}{2}} \right |}\right )}{c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

-2/3*(((4*(c^5*d^9*e^3 - 4*a*c^4*d^7*e^5 + 6*a^2*c^3*d^5*e^7 - 4*a^3*c^2*d^3*e^9 + a^4*c*d*e^11)*x/(c^6*d^10 -
 4*a*c^5*d^8*e^2 + 6*a^2*c^4*d^6*e^4 - 4*a^3*c^3*d^4*e^6 + a^4*c^2*d^2*e^8) + 3*(3*c^5*d^10*e^2 - 11*a*c^4*d^8
*e^4 + 14*a^2*c^3*d^6*e^6 - 6*a^3*c^2*d^4*e^8 - a^4*c*d^2*e^10 + a^5*e^12)/(c^6*d^10 - 4*a*c^5*d^8*e^2 + 6*a^2
*c^4*d^6*e^4 - 4*a^3*c^3*d^4*e^6 + a^4*c^2*d^2*e^8))*x + 6*(c^5*d^11*e - 3*a*c^4*d^9*e^3 + 2*a^2*c^3*d^7*e^5 +
 2*a^3*c^2*d^5*e^7 - 3*a^4*c*d^3*e^9 + a^5*d*e^11)/(c^6*d^10 - 4*a*c^5*d^8*e^2 + 6*a^2*c^4*d^6*e^4 - 4*a^3*c^3
*d^4*e^6 + a^4*c^2*d^2*e^8))*x + (c^5*d^12 - a*c^4*d^10*e^2 - 6*a^2*c^3*d^8*e^4 + 14*a^3*c^2*d^6*e^6 - 11*a^4*
c*d^4*e^8 + 3*a^5*d^2*e^10)/(c^6*d^10 - 4*a*c^5*d^8*e^2 + 6*a^2*c^4*d^6*e^4 - 4*a^3*c^3*d^4*e^6 + a^4*c^2*d^2*
e^8))/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2) - sqrt(c*d)*e^(3/2)*log(abs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(
sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x))*c*d*e - sqrt(c*d)*a*e^(5/2)))/(c^3*d^3)

________________________________________________________________________________________

maple [B]  time = 0.08, size = 2538, normalized size = 14.76 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^4/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2),x)

[Out]

1/2*e/c^2/d/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)+1/2*e*d^3/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*
e+(a*e^2+c*d^2)*x)^(1/2)-25/16*e^2/c^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a-7/2*e^2/c*x^2/(c*d*e*x^2+a*d*
e+(a*e^2+c*d^2)*x)^(3/2)-1/48*c*d^6/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)-1
1/16/c*d^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)-7/3*e^5*d^3/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x^2+a
*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^2+7/16*e^4/c^3/d^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a^2-1/24*e*c*d^5/(-a^
2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*x-1/3*e^3*x^3/c/d/(c*d*e*x^2+a*d*e+(a*e^2
+c*d^2)*x)^(3/2)+e^2*d^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x-7/24*e^6/c
^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a^3+5/16*e^2*d^4/(-a^2*e^4+2*a*c*d
^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a-1/6*e*c^2*d^7/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*
d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)-1/48*e^6/c^4/d^4/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a^3+e^2/c^2/d^2*
ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)-e^2/c^2/
d^2*x/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)+1/2*e^3/c^3/d^3/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a-31/8*e
/c*d*x/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)+e^6/c^2/d^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(
a*e^2+c*d^2)*x)^(1/2)*x*a^2+2/3*e^7/c^2/d/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(
3/2)*x*a^3+16/3*e^4*c*d^4/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x*a-1/3*e
^10/c^2/d^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x*a^4-5/4*e^5/c*d/(-a^2
*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*x*a^2-1/24*e^9/c^3/d^3/(-a^2*e^4+2*a*c*d^2
*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*x*a^4+5/2*e^3*c*d^5/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(
c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a+1/2*e^4/c^2/d^2*x^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a+1/8*e^5
/c^3/d^3*x/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a^2-7/3*e^7/c*d/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x
^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^3-1/3*e^2*c^2*d^6/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x^2+a*d*e+(a*e^2
+c*d^2)*x)^(1/2)*x-1/48*e^10/c^4/d^4/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*
a^5+2*e^4/c/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x*a+1/2*e^7/c^3/d^3/(-a^2
*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^3+3/2*e^5/c^2/d/(-a^2*e^4+2*a*c*d^2*e^2-
c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^2-10*e^6*d^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x^2+
a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x*a^2+16/3*e^8/c/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2
)*x)^(1/2)*x*a^3+2/3*e^3*d^3/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*x*a+3/2*
e^3/c*d/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a+5/16*e^8/c^3/d^2/(-a^2*e^4+
2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a^4-1/6*e^11/c^3/d^3/(-a^2*e^4+2*a*c*d^2*e^2-c^
2*d^4)^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^5+5/2*e^9/c^2/d/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)^2/(c*d*e*x
^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^4-7/24*e^4/c*d^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(c*d*e*x^2+a*d*e+(a*e^2+c*
d^2)*x)^(3/2)*a^2-3/4*e^3/c^2/d*x/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more details)Is a*e^2-c*d^2 zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d+e\,x\right )}^4}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^4/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)

[Out]

int((d + e*x)^4/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x\right )^{4}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**4/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Integral((d + e*x)**4/((d + e*x)*(a*e + c*d*x))**(5/2), x)

________________________________________________________________________________________